理解因果关系是现代科学的前沿话题之一,并在技术领域有着广泛的应用。在最近发表于 Physical Review Research 的一项基础研究中,清华大学与华为2012实验室中央研究院的联合研究团队提出了一种因果度量的新工具。对于任意系统,该方法能够定量分析不同系统分量间的时变因果关系,适用于广泛存在的高维和非平稳随机过程。
在得到和后,度量转移熵的先决条件已得到了较好的保证。作者直接基于原始的转移熵给出了度量,得到了傅里叶域转移熵谱T(X, Y, t, ω)[见图1(c)]。在T(X, Y, t, ω)中,给定一个时刻t和频率ω,就能得到系统X和Y的ω频率分量在时刻t的转移熵,从而反映因果关系。在T(X, Y, t, ω)中,因果关系不仅是时变的(沿着t轴变化),还是频变的(沿着ω轴变化)。自然,将T(X, Y, t, ω)沿着t轴相加可得到频变的因果关系T(X, Y, ω),将T(X, Y, t, ω)沿着ω轴相加可得到频变的因果关系T(X, Y, t),将T(X, Y, t, ω)的所有数值进行加和可得到经典的转移熵T(X, Y)[图1(d)]。由此,该方法能够提供T(X, Y)展开后的结果,从而能提供更丰富的因果关系的信息。同时,通过对T(X, Y, t, ω)中的数值进行加权,使用者可对因果关系进行筛选,从而适用于各类科学和工程场景中的降噪。
图2. 傅里叶转移熵谱的信效度分析。(a)T(X, Y, t, ω)对粗粒化参数的依赖性分析。(b)基于timeshifting surrogates 和置换检验,证明T(X, Y, t, ω)具有统计显著性p<10-3和高统计效力ξ。(c)通过改变扩散耦合logistic振子X和Y的耦合关系,能够敏感地调节T(X, Y, t, ω)的数值。(d)通过改变扩散耦合logistic振子X和Y的耦合关系,能够敏感地调节T(X, Y, t, ω)的统计显著性。
作者对T(X, Y, t, ω)的信效度进行了系统的检验。一方面,作者分析了T(X, Y, t, ω)对粗粒化尺度的依赖性,证明了基于T(X, Y, t, ω)的因果分析对参数并不依赖 [图2(a)]。另一方面,作者结合 timeshifting surrogates [56–58] 和置换检验 [59,60]提出了针对T(X, Y, t, ω)的统计检验,以检验信息度量在有限数据集下常出现的偏差[55],证明了T(X, Y, t, ω)的高统计效力 [图2(b)]。此外,作者使用了分叉指数为4的扩散耦合 logistic 振子(diffusively coupled logistic oscillators)[62,63]检验了T(X, Y, t, ω)是否能随着真实因果关系的强弱起伏而敏感地变化,证明了T(X, Y, t, ω)在因果发现方面的敏感性 [图2(c-d)]。
[1] A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series No. 12 (Cambridge University Press, Cambridge, U.K., 2003)[2] E. Pereda, R. Q. Quiroga, and J. Bhattacharya, Nonlinear multivariate analysis of neurophysiological signals, Prog. Neurobiol. 77, 1 (2005).[3] K. Hlavácková-Schindler, M. Paluš, M. Vejmelka, and J. ˇ Bhattacharya, Causality detection based on informationtheoretic approaches in time series analysis, Phys. Rep. 441, 1 (2007). [4] C. W. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica: J. Eco. Soc. 37, 424 (1969). [5] D. Marinazzo, M. Pellicoro, and S. Stramaglia, Kernel Method for Nonlinear Granger Causality, Phys. Rev. Lett. 100, 144103 (2008). [6] N. Ancona, D. Marinazzo, and S. Stramaglia, Radial basis function approach to nonlinear Granger causality of time series, Phys. Rev. E 70, 056221 (2004). [7] M.-C. Ho, Y.-C. Hung, and I.-M. Jiang, Phase synchronization in inhomogeneous globally coupled map lattices, Phys. Lett. A 324, 450 (2004). [8] A. Arnold, Y. Liu, and N. Abe, Temporal causal modeling with graphical Granger methods, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2007), pp. 66–75. [9] H. Liu, J. Lafferty, and L. Wasserman, The nonparanormal: Semiparametric estimation of high dimensional undirected graphs, J. Mach. Learn. Res. 10, 2295 (2009). [10] M. Dhamala, G. Rangarajan, and M. Ding, Estimating Granger Causality from Fourier and Wavelet Transforms of Time Series Data, Phys. Rev. Lett. 100, 018701 (2008). [11] T. Schreiber, Measuring Information Transfer, Phys. Rev. Lett. 85, 461 (2000). [12] M. Staniek and K. Lehnertz, Symbolic Transfer Entropy, Phys. Rev. Lett. 100, 158101 (2008). [13] M. Lobier, F. Siebenhühner, S. Palva, and J. M. Palva, Phase transfer entropy: A novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions, Neuroimage 85, 853 (2014). [14] M. Lungarella, A. Pitti, and Y. Kuniyoshi, Information transfer at multiple scales, Phys. Rev. E 76, 056117 (2007). [15] J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, Escaping the Curse of Dimensionality in Estimating Multivariate Transfer Entropy, Phys. Rev. Lett. 108, 258701 (2012).[16] P. Wollstadt, M. Martínez-Zarzuela, R. Vicente, F. J. DíazPernas, and M. Wibral, Efficient transfer entropy analysis of non-stationary neural time series, PLoS One 9, e102833 (2014). [17] M. Porfiri and M. Ruiz Marín, Transfer entropy on symbolic recurrences, Chaos 29, 063123 (2019). [18] J. F. Restrepo, D. M. Mateos, and G. Schlotthauer, Transfer entropy rate through Lempel-Ziv complexity, Phys. Rev. E 101, 052117 (2020). [19] J. Zhang, O. Simeone, Z. Cvetkovic, E. Abela, and M. Richardson, ITENE: Intrinsic transfer entropy neural estimator, arXiv:1912.07277. [20] R. Silini and C. Masoller, Fast and effective pseudo transfer entropy for bivariate data-driven causal inference, Sci. Rep. 11, 8423 (2021). [21] J. Pearl, Causality: Models, Reasoning and Inference, (Cambridge University Press, Cambridge, U.K., 2000). [22] C. Diks and V. Panchenko, A note on the Hiemstra-Jones test for Granger non-causality, Stud. Nonlinear Dyn. Econom. 9(2) (2005). [23] C. Diks and J. DeGoede, A general nonparametric bootstrap test for Granger causality, in Global Analysis of Dynamical Systems, edited by H. W. Broer, B. Krauskopf, and G. Vegter (Institute of Physics Publishing (IOP), London, 2001), pp. 393–405. [24] R. Vicente, M. Wibral, M. Lindner, and G. Pipa, Transfer entropy—A model-free measure of effective connectivity for the neurosciences, J. Comput. Neurosci. 30, 45 (2011). [25] J. D. Victor, Binless strategies for estimation of information from neural data, Phys. Rev. E 66, 051903 (2002). [26] V. A. Vakorin, N. Kovacevic, and A. R. McIntosh, Exploring transient transfer entropy based on a group-wise ICA decomposition of EEG data, Neuroimage 49, 1593 (2010). [27] R. E. Spinney, M. Prokopenko, and J. T. Lizier, Transfer entropy in continuous time, with applications to jump and neural spiking processes, Phys. Rev. E 95, 032319 (2017). [28] M. Ursino, G. Ricci, and E. Magosso, Transfer entropy as a measure of brain connectivity: A critical analysis with the help of neural mass models, Front. Comput. Neurosci. 14, 45 (2020). [29] T. Dimpfl and F. J. Peter, Using transfer entropy to measure information flows between financial markets, Stud. Nonlinear Dyn. Econom. 17, 85 (2013). [30] A. Papana, C. Kyrtsou, D. Kugiumtzis, and C. Diks, Detecting causality in non-stationary time series using partial symbolic transfer entropy: Evidence in financial data, Comput. Econ. 47, 341 (2016). [31] F. Toriumi and K. Komura, Investment index construction from information propagation based on transfer entropy, Comput. Econ. 51, 159 (2018). [32] M. Camacho, A. Romeu, and M. Ruiz-Marin, Symbolic transfer entropy test for causality in longitudinal data, Econ. Model. 94, 649 (2021). [33] Q. Ji, H. Marfatia, and R. Gupta, Information spillover across international real estate investment trusts: Evidence from an entropy-based network analysis, North Am. J. Econ. Finance 46, 103 (2018). [34] T. M. Cover, Elements of Information Theory (Wiley, Hoboken, NJ, 1999). [35] D. A. Smirnov, Spurious causalities with transfer entropy, Phys. Rev. E 87, 042917 (2013).[36] A. Kraskov, H. Stögbauer, and P. Grassberger, Estimating mutual information, Phys. Rev. E 69, 066138 (2004). [37] W. A. Gardner, A. Napolitano, and L. Paura, Cyclostationarity: Half a century of research, Signal Process. 86, 639 (2006). [38] R. J. Marks II, Handbook of Fourier Analysis & its Applications (Oxford University Press, Oxford, U.K., 2009). [39] P. Brémaud, Mathematical Principles of Signal Processing: Fourier and Wavelet Analysis (Springer, Berlin, 2013). [40] A. Bruns, Fourier-, Hilbert-and wavelet-based signal analysis: Are they really different approaches? J. Neurosci. Methods 137, 321 (2004). [41] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975). [42] O. Rioul and M. Vetterli, Wavelets and signal processing, IEEE Signal Process. Mag. 8, 14 (1991). [43] N. E. Huang, Hilbert-Huang Transform and its Applications, Vol. 16 (World Scientific, Singapore, 2014). [44] G. Kaiser and L. H. Hudgins, A Friendly Guide to Wavelets, Vol. 300 (Springer, Berlin, 1994). [45] G. B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, J. Fourier Anal. Appl. 3, 207 (1997). [46] Z. Peng, W. T. Peter, and F. Chu, An improved Hilbert–Huang transform and its application in vibration signal analysis, J. Sound Vib. 286, 187 (2005). [47] R. T. Ogden, Essential Wavelets for Statistical Applications and Data Analysis (Springer, Berlin, 1997). [48] C.-L. Liu, A Tutorial of the Wavelet Transform (NTUEE, Taiwan, 2010). [49] R. R. Coifman, Y. Meyer, and V. Wickerhauser, Wavelet analysis and signal processing, in Wavelets and their Applications (Jones and Barlett, Boston, 1992). [50] X. Cui, D. M. Bryant, and A. L. Reiss, NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation, Neuroimage 59, 2430 (2012). [51] X. Cui, D. M. Bryant, and A. L. Reiss, The NIRS data in a built-in directory of Matlab (2012), https://ww2.mathworks.cn/ help/wavelet/ug/wavelet-coherence-of-brain-dynamics.html. [52] C. Bandt and B. Pompe, Permutation Entropy: A Natural Complexity Measure for Time Series, Phys. Rev. Lett. 88, 174102 (2002). [53] J. Xie, J. Gao, Z. Gao, X. Lv, and R. Wang, Adaptive symbolic transfer entropy and its applications in modeling for complex industrial systems, Chaos 29, 093114 (2019). [54] C. Torrence and G. P. Compo, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc. 79, 61 (1998). [55] S. Panzeri, R. Senatore, M. A. Montemurro, and R. S. Petersen, Correcting for the sampling bias problem in spike train information measures, J. Neurophysiol. 98, 1064 (2007). [56] R. Andrzejak, A. Ledberg, and G. Deco, Detecting event-related time-dependent directional couplings, New J. Phys. 8, 6 (2006). [57] T. Wagner, J. Fell, and K. Lehnertz, The detection of transient directional couplings based on phase synchronization, New J. Phys. 12, 053031 (2010). [58] M. Martini, T. A. Kranz, T. Wagner, and K. Lehnertz, Inferring directional interactions from transient signals with symbolic transfer entropy, Phys. Rev. E 83, 011919 (2011). [59] B. Phipson and G. K. Smyth, Permutation p-values should never be zero: Calculating exact p-values when permutations are randomly drawn, Stat. Appl. Genet. Mol. Biol. 9(1) (2010).[60] E. Maris and R. Oostenveld, Nonparametric statistical testing of EEG- and MEG-data, J. Neurosci. Methods 164, 177 (2007). [61] M. Lindner, R. Vicente, V. Priesemann, and M. Wibral, TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy, BMC Neurosci. 12, 119 (2011). [62] A. L. Lloyd, The coupled logistic map: A simple model for the effects of spatial heterogeneity on population dynamics, J. Theor. Biol. 173, 217 (1995). [63] A. Valencio and M. d. S. Baptista, Coupled logistic maps: Functions for generating the time-series from networks of coupled logistic systems (2018), open source codes for MATLAB. available at https://github.com/artvalencio/coupled-logisticmaps. [64] Y. Tian, Y. Wang, Z. Zhang, and P. Sun, Transfer entropy spectrum in the Fourier domain (2021), open source codes available at https://github.com/doloMing/Transfer-entropy-spectrum-inthe-Fourier-domain.[65] https://mp.weixin.qq.com/s/gH4chxE4OyvsR1Pyd2XaDQ